International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 12, December 2020,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Common Fixed Point Theorem of Four Maps in a Complete Menger Space

Dr.Pardeep Kumar

Associate Professor, Department of Mathematics

Government College for Girls, Sector-14, Gurugram

Abstract:In this paper, I proved a common fixed point theorem of four maps in a complete Menger space using compatible maps of type(A) and continuity.

Keywords: Continuity, Completeness, Compatibility of type(A), Menger Space.

1. Introduction

The notion of Probabilistic Metric Space (or Statistical Metric Space) was initially introduced by Menger [5] in 1944, which is a generalization of metric space. The idea in probabilistic metric space is associated with a distribution function assigned to a pair of points, say (x, y), denoted by $\mathcal{F}_{x,y}(t)$ where t > 0 and is interpreted as the probability that distance between x and y is less than t, whereas in the metric space the distance function is a single positive number. Schweizer and Sklar [7] gave some basic results in this space. Many authors observed that contraction condition in metric space may be exactly translated into PM-Space endowed with minimum norm. A generalization of Banach contraction principle in Menger space is given by Sehgal and Bharucha [8]. Some basic definitions and theorems in Menger space which are used for proving the main result are as follows.

Definition 1.1 [7] "Let $\Delta : [0,1] \times [0,1] \to [0,1]$ be a mapping. Then Δ is said to be a triangular-norm (briefly, t-norm) if for all α , β , $\gamma \in [0,1]$,

- (i) $\Delta(\alpha, 1) = \alpha, \ \Delta(0, 0) = 0;$
- (ii) $\Delta(\alpha, \beta) = \Delta(\beta, \alpha)$;
- (iii) $\Delta(\alpha, \beta) \ge \Delta(\gamma, \delta)$ for $\alpha \ge \gamma, \beta \ge \delta$;
- (iv) $\Delta(\Delta(\alpha, \beta), \gamma) = \Delta(\alpha, \Delta(\beta, \gamma))$."

Example 1.2 [7] "The four basic t-norms are as follows:

- (i) The minimum t-norm: $\Delta_{M}(\alpha, \beta) = \min{\{\alpha, \beta\}}$.
- (ii) The product t-norm: $\Delta_{p}(\alpha, \beta) = \alpha\beta$.
- (iii) The Lukasiewicz t-norm: $V_L(\alpha, \beta) = \min \{ \alpha + \beta 1, 0 \}$.
- (iv) The weakest t-norm, the drastic product:

$$\Delta_{D}(\alpha, \beta) = \begin{cases} \min\{\alpha, \beta\} & \text{if } \max\{\alpha, \beta\} = 1, \\ 0, & \text{otherwise.} \end{cases}$$

We have the following ordering in the above stated norms:

$$\Delta_D < \Delta_L < \Delta_P < \Delta_M$$
."

Definition 1.3 [7] "A mapping $\mathcal{F} : \mathbb{R} \to \mathbb{R}^+$ is a distribution function if it is left continuous and non-decreasing with inf $\mathcal{F}(x) = 0$ and $\sup \mathcal{F}(x) = 1$ for all real x."

We shall denote the set of all distribution functions by \mathcal{L} whereas $\mathcal{H}(t)$ be the Heaviside distribution function defined as

$$\mathcal{H}(t) = \begin{cases} 0, & \text{if } t \le 0 \\ 1, & \text{if } t > 0. \end{cases}$$

Definition 1.4 [6] "The ordered pair $(\mathcal{K}, \mathcal{F})$ is called a PM space if \mathcal{K} be a non-empty set and $\mathcal{F}: \mathcal{K} \times \mathcal{K} \to \mathcal{L}$ be a mapping satisfying:

(p₁)
$$\mathcal{F}_{x,y}(t) = 1$$
 for all $t > 0$, if and only if $x = y$;

$$(p_2) \mathcal{F}_{x,v}(0) = 0;$$

$$(p_3) \mathcal{F}_{x,y}(t) = \mathcal{F}_{y,x}(t);$$

$$\begin{split} (p_4) \ \mathcal{F}_{x,y}(t) &= 1 \ \text{and} \quad \mathcal{F}_{y,z}(s) \ = 1 \text{, then } \mathcal{F}_{x,z}(t+s) = 1 \text{,} \\ \text{for all } x,y,z \ \text{in } \mathcal{K} \ \text{ and } t,s \geq 0 \ . \end{split}$$

Every metric space can always be realized as a probabilistic metric space by putting the relation $\mathcal{F}_{x,y}(t) = \mathcal{H}(t - d(x,y))$ for all x, y in \mathcal{K} ."

Definition 1.5 [6] "The ordered triplet $(\mathcal{K}, \mathcal{F}, \Delta)$ is called a Menger space if $(\mathcal{K}, \mathcal{F})$ is a probabilistic metric space, Δ is a t-norm and satisfies for all x, y, z in \mathcal{K} and $t, s \geq 0$,

$$(p_5) \mathcal{F}_{x,z}(t+s) \ge \Delta \left(\mathcal{F}_{x,y}(t), \mathcal{F}_{y,z}(s) \right).$$

Definition 1.6 [6] "A sequence $\{x_n\}$ in a Menger space $(\mathcal{K}, \mathcal{F}, \Delta)$ is said to be:

- (i) Cauchy sequence in \mathcal{K} if for every $\epsilon > 0$ and $\lambda > 0$, we can find a positive integer $N_{\epsilon,\lambda}$ satisfying $\mathcal{F}_{x_n,x_m}(\epsilon) > 1 \lambda$, for all $n,m \geq N_{\epsilon,\lambda}$.
- (ii) Convergent at a point $x \in \mathcal{K}$ if for every $\epsilon > 0$ and $\lambda > 0$, there exists a positive integer $N_{\epsilon\lambda}$ satisfying $\mathcal{F}_{X_n,X}(\epsilon) > 1 \lambda$, for all $n \geq N_{\epsilon\lambda}$."

The space \mathcal{K} is said to becomplete if every Cauchy sequence is convergent in \mathcal{K} .

Definition 1.7 [6] "Let S and T be two self-mappings of a Menger space $(\mathcal{K}, \mathcal{F}, \Delta)$.

Then S and T are said to be compatible if $\lim_{n\to\infty} \mathcal{F}_{STx_n,TSx_n}(t) = 1$ for all

t > 0 where $\{x_n\}$ is a sequence in \mathcal{K} satisfying

$$\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = u, \text{ where } u \in \mathcal{K}.$$

Definition 1.8 [10] "Two self-mappings A and S of a non-empty set \mathcal{K} are said to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points i.e. if Az = Sz for some $z \in \mathcal{K}$, then ASz = SAz."

Theorem 1.9 [10] "If two self-mappings A and S of a Menger space $(\mathcal{K}, \mathcal{F}, \Delta)$ are compatible, then they are weakly compatible."

Definition 1.10 [2] "Let S and T be two self-mappings of a Menger space $(\mathcal{K}, \mathcal{F}, \Delta)$. Then S and T are said to be compatible of type (A) if we can find a sequence $\{x_n\}$ in \mathcal{K} satisfying $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = u$, where $u\in\mathcal{K}$ and $\lim_{n\to\infty} \mathcal{F}_{STx_n,TTx_n}(t) = 1$ and $\lim_{n\to\infty} \mathcal{F}_{TSx_n,SSx_n}(t) = 1$ for all t>0."

Definition 1.11 [2] "Let S and T be two self-mappings of a Menger space $(\mathcal{K}, \mathcal{F}, \Delta)$. Then S and T are said to be compatible of type (β) if we can find a sequence $\{x_n\}$ in \mathcal{K} satisfying $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = u$, where $u \in \mathcal{K}$ and $\lim_{n\to\infty} \mathcal{F}_{SSx_n,TTx_n}(t) = 1$ for all t > 0."

Definition 1.12 [1] "Two self-maps S and T of a set \mathcal{K} are occasionally weakly compatible maps (shortly owc) if and only if we can find a point x in \mathcal{K} satisfying Sx = Tx and STx = TSx."

Theorem 1.13 [3] "Let S and T be compatible maps of type (A) in a Menger space $(\mathcal{K}, \mathcal{F}, \Delta)$ and $Sx_n, Tx_n \to u$ for some u in \mathcal{K} . Then

- (i) $TSx_n \rightarrow Su \text{ if } S \text{ is continuous.}$
- (ii) STu = TSu and Su = Tu if S and T are continuous."

Theorem 1.14 [11] "Let $(\mathcal{K}, \mathcal{F}, \Delta)$ be a Menger space. If there exists a constant $k \in (0, 1)$ such that $\mathcal{F}_{x_{n+1},x_n}(kt) \geq \mathcal{F}_{x_n,x_{n-1}}(t)$ for all x, y in \mathcal{K} and t > 0, then $\{x_n\}$ is a Cauchy sequence in \mathcal{K} ."

Theorem 1.15 [10] "Let $(\mathcal{K}, \mathcal{F}, \Delta)$ be a Menger space. If there exists a constant $k \in (0, 1)$ such that $\mathcal{F}_{x,y}(kt) \ge \mathcal{F}_{x,y}(t)$ for all x, y in \mathcal{K} and t > 0, then x = y."

Theorem 1.16 [10] "In a Menger space(\mathcal{K} , \mathcal{F} , Δ) if $\Delta(a, a) \ge a$, for all $a \in [0, 1]$, then $\Delta(a, b) = \min\{a, b\}$ for $a, b \in [0, 1]$."

2. Main Result

Theorem 2.1 Let A, S, L and M be self-maps on a complete Mengerspace $(\mathcal{K}, \mathcal{F}, \Delta)$ with $\Delta(a, a) \ge a$, for all $a \in [0, 1]$ and satisfying :

- (i) $L(\mathcal{K}) \subseteq S(\mathcal{K}), M(\mathcal{K}) \subseteq A(\mathcal{K});$
- (ii) the pairs (L, A) and (M, S) are compatible maps of type (A);
- (iii) either A or L is continuous;

(iv) there exists $k \in (0, 1)$ such that

$$\mathcal{F}_{Lx,My}(kt) \ge Min \{\mathcal{F}_{Ax,Lx}(t), \mathcal{F}_{Sy,My}(t), \mathcal{F}_{Sy,Lx}(1-\alpha q)t,$$

$$\mathcal{F}_{Ax,My}\big((1+\alpha q)t\big),\mathcal{F}_{Ax,Sy}(t)\},$$

for all
$$x, y \in \mathcal{K}$$
, $\alpha \in [0,1]$, $q \in (0,1)$ and $t > 0$.

Then A, S, L and M have a unique common fixed point in \mathcal{K} .

Proof. Let $x_0 \in \mathcal{K}$. From condition (i) there exists $x_1, x_2 \in \mathcal{K}$ such that

 $Lx_0 = Sx_1 = y_0$ and $Mx_1 = Ax_2 = y_1$. Inductively, we can make sequences $\{x_n\}$ and $\{y_n\}$ in

$$\mathcal{K}$$
 such that $Lx_{2n} = Sx_{2n+1} = y_{2n}$ and $Mx_{2n+1} = Ax_{2n+2} = y_{2n+1}$

for
$$n = 0, 1, 2, ...$$

Taking $x = x_{2n}$ and $y = x_{2n+1}$ in (iv), we get

$$\mathcal{F}_{Lx_{2n},Mx_{2n+1}}(kt) \geq Min \; \{\mathcal{F}_{Ax_{2n},Lx_{2n}}(t), \mathcal{F}_{Sx_{2n+1},Mx_{2n+1}}(t), \mathcal{F}_{Sx_{2n+1},Lx_{2n}}((1-\alpha q)t), \\$$

$$\mathcal{F}_{Ax_{2n},Mx_{2n+1}}((1+\alpha q)t),\mathcal{F}_{Ax_{2n},Sx_{2n+1}}(t)\},$$

that is,
$$\mathcal{F}_{y_{2n},y_{2n+1}}(kt) \ge \min\{\mathcal{F}_{y_{2n-1},y_{2n}}(t), \mathcal{F}_{y_{2n},y_{2n+1}}(t), \mathcal{F}_{y_{2n-1},y_{2n+1}}((1+\alpha q)t),$$

$$\mathcal{F}_{V_{2n-1},V_{2n}}(t)$$

$$\geq \text{Min } \{\mathcal{F}_{y_{2n-1},y_{2n}}(t),\mathcal{F}_{y_{2n},y_{2n+1}}(t),\mathcal{F}_{y_{2n-1},y_{2n}}(t),\mathcal{F}_{y_{2n},y_{2n+1}}(\alpha qt)\}$$

$$\geq \text{Min } \{\mathcal{F}_{y_{2n-1},y_{2n}}(t),\mathcal{F}_{y_{2n},y_{2n+1}}(t),\mathcal{F}_{y_{2n},y_{2n+1}}(\alpha qt)\}.$$

As t-norm is continuous, letting $\alpha q \rightarrow 1$ we get

$$\mathcal{F}_{y_{2n},y_{2n+1}}(kt) \geq Min \ \{\mathcal{F}_{y_{2n-1},y_{2n}}(t),\mathcal{F}_{y_{2n},y_{2n+1}}(t),\mathcal{F}_{y_{2n},y_{2n+1}}(t)\}$$

= Min
$$\{\mathcal{F}_{y_{2n-1},y_{2n}}(t), \mathcal{F}_{y_{2n},y_{2n+1}}(t)\}.$$

Hence,
$$\mathcal{F}_{y_{2n},y_{2n+1}}(kt) \ge \text{Min } \{\mathcal{F}_{y_{2n-1},y_{2n}}(t),\mathcal{F}_{y_{2n},y_{2n+1}}(t)\}.$$

Similarly,
$$\mathcal{F}_{y_{2n+1},y_{2n+2}}(kt) \ge Min \{\mathcal{F}_{y_{2n},y_{2n+1}}(t), \mathcal{F}_{y_{2n+1},y_{2n+2}}(t)\}.$$

Therefore for all n we have

$$\mathcal{F}_{y_{n},y_{n+1}}(kt) \!\! \geq \; Min \; \{\mathcal{F}_{y_{n-1},y_{n}}(t), \; \mathcal{F}_{y_{n},y_{n+1}}(t)\}.$$

Consequently,

$$\mathcal{F}_{y_n,y_{n+1}}(t) \!\! \geq \! \text{Min} \ \{ \mathcal{F}_{y_{n-1},y_n}(k^{-1}t) \text{, } \mathcal{F}_{y_n,y_{n+1}}(k^{-1}t) \}.$$

Applying the above inequality repeatedly, we get

$$\mathcal{F}_{y_n,y_{n+1}}(t) \ge Min \ \{\mathcal{F}_{y_{n-1},y_n}(k^{-1}t), \mathcal{F}_{y_n,y_{n+1}}(k^{-m}t)\}.$$

Since $\mathcal{F}_{y_n,y_{n+1}}(k^{-m}t) \to 1$ as $m \to \infty$, it follows that

$$\mathcal{F}_{y_n,y_{n+1}}(kt) \geq \{\mathcal{F}_{y_{n-1},y_n}(t)\} \text{ for all } n \in N \text{ and for all } x > 0.$$

Therefore, by Theorem 1.14, $\{y_n\}$ is a Cauchy sequence in \mathcal{K} , which is complete.

Hence $\{y_n\} \to z \in \mathcal{K}$. Also its sub-sequences,

$$\{Lx_{2n}\} \to z, \{Sx_{2n+1}\} \to z,$$
 (2.1)

$$\{Mx_{2n+1}\} \rightarrow z, \{Ax_{2n}\} \rightarrow z.$$
 (2.2)

Case I. When A is continuous, $(A)^2x_{2n} \rightarrow Az$ and $ALx_{2n} \rightarrow Az$. Also L and A are compatible maps of type (A), we have $LAx_{2n} \rightarrow Az$.

Take $x = Ax_{2n}$ and $y = x_{2n+1}$ with $\alpha = 0$ in (iv), we get

$$\mathcal{F}_{LA \ x_{2n}, Mx_{2n+1}}(kt) \ge Min \ \{\mathcal{F}_{A^2x_{2n}, LA \ x_{2n}}(t), \mathcal{F}_{Sx_{2n+1}, Mx_{2n+1}}(t),$$

$$\mathcal{F}_{Sx_{2n+1},LAx_{2n}}(t),\mathcal{F}_{A^2x_{2n},Mx_{2n+1}}(t),\mathcal{F}_{A^2x_{2n},Sx_{2n+1}}(t)\}.$$

As $n \to \infty$, we have

$$\mathcal{F}_{Az,z}(kt) \geq \text{Min } \{\mathcal{F}_{Az,Az}(t), \ \mathcal{F}_{z,z}(t), \ \mathcal{F}_{z,Az}(t), \ \mathcal{F}_{Az,z}(t), \ \mathcal{F}_{Az,z}(t), \ \mathcal{F}_{Az,z}(t)\},$$

that is $\mathcal{F}_{Az,z}(kt) \geq \mathcal{F}_{Az,z}(t)$.

Using Theorem 1.15, we obtain

$$Az = z (2.3)$$

Taking x = z and $y = x_{2n+1}$ with $\alpha = 0$ in (iv), we get

$$\mathcal{F}_{Lz,Mx_{2n+1}}(kt) \ge Min \ \{\mathcal{F}_{Az,Lz}(t),\mathcal{F}_{Sx_{2n+1},Mx_{2n+1}}(t),\mathcal{F}_{Sx_{2n+1},Lz}(t),$$

$$\mathcal{F}_{Az,Mx_{2n+1}}(t),\mathcal{F}_{Az,Sx_{2n+1}}(t)\}.$$

Taking $n \to \infty$, we get

$$\begin{split} \mathcal{F}_{Lz,z}(kt) &\geq \text{Min } \{\mathcal{F}_{z,Lz}(t), \ \mathcal{F}_{z,z}(t), \ \mathcal{F}_{z,Lz}(t), \mathcal{F}_{Lz,z}(t), \ \mathcal{F}_{Lz,z}(t) \}, \\ &= \mathcal{F}_{Lz,z}(t). \end{split}$$

By Theorem 1.15, we get Lz = z. So, z = Lz = Az.

Since $L(\mathcal{K}) \subseteq S(\mathcal{K})$, there exists $v \in \mathcal{K}$ such that z = Lz = Sv.

Taking $x = x_{2n}$ and y = v with $\alpha = 0$ in (iv), we get

$$\mathcal{F}_{Lx_{2n},Mv}(kt) \ge Min \{\mathcal{F}_{Ax_{2n},Lx_{2n}}(t), \mathcal{F}_{Sv,Mv}(t), \mathcal{F}_{Sv,Lx_{2n}}(t),$$

$$\mathcal{F}_{Ax_{2n},Mv}(t)$$
, $\mathcal{F}_{Ax_{2n},Sv}(t)$.

Letting $n \to \infty$ and using (2.2), we have

$$\begin{split} \mathcal{F}_{z,M_{V}}\left(kt\right) &\geq \text{Min } \{\mathcal{F}_{z,z}(t), \ \mathcal{F}_{z,M_{V}}(t), \ \mathcal{F}_{z,z}(t), \ \mathcal{F}_{z,M_{V}}(t), \ \mathcal{F}_{z,z}(t)\}, \\ &= \mathcal{F}_{z,M_{V}}(t). \end{split}$$

Therefore, by Theorem 1.15,Mv = z and so z = Mv = Sv.

Thus, v is a coincidence point of M and S. Since M and S are compatible maps of type (A), we have MSv = SMv. Thus, Sz = Mz.

By taking $x = x_{2n}$ and y = z with $\alpha = 0$ in (iv), we get

$$\mathcal{F}_{Lx_{2n},Mz}(kt) \ge Min \{\mathcal{F}_{Ax_{2n},Lx_{2n}}(t), \mathcal{F}_{Sz,Mz}(t), \mathcal{F}_{Sz,Lx_{2n}}(t),$$

$$\mathcal{F}_{Ax_{2n},Mz}(t)$$
, $\mathcal{F}_{Ax_{2n},Sz}(t)$.

Taking $n \to \infty$, and using equation (2.1), we get

$$\begin{split} \mathcal{F}_{z,Mz}(kt) &\geq \text{Min } \{\mathcal{F}_{z,z}(t), \mathcal{F}_{Mz,z}(t), \mathcal{F}_{Mz,z}(t), \mathcal{F}_{z,Mz}(t), \mathcal{F}_{z,Mz}(t)\}, \\ &= \mathcal{F}_{z,Mz}(t). \end{split}$$

Therefore, by Theorem 1.15,Mz = zand so z = Az = Lz = Mz = Sz.

i.e. z is a common fixed point of four maps.

Case II. When L is continuous, $L^2x_{2n} \rightarrow Lz$ and $LAx_{2n} \rightarrow Lz$. Also L and A are compatible maps of type (A), we have $ALx_{2n} \rightarrow Lz$.

Taking $x = Lx_{2n}$ and $y = x_{2n+1}$ with $\alpha = 0$ in (iv), we get

$$\mathcal{F}_{LLx_{2n},Mx_{2n+1}}(kt) \ge Min\{\mathcal{F}_{ALx_{2n},LLx_{2n}}(t), \mathcal{F}_{Sx_{2n+1},Mx_{2n+1}}(t),$$

$$\mathcal{F}_{Sx_{2n+1},LLx_{2n}}(t)$$
, $\mathcal{F}_{ALx_{2n},Mx_{2n+1}}(t)$, $\mathcal{F}_{ALx_{2n},Sx_{2n+1}}(t)$.

Taking $n \to \infty$, we get

$$\mathcal{F}_{Lz,z}(kt) \ge \text{Min } \{\mathcal{F}_{Lz,Lz}(t), \mathcal{F}_{z,z}(t), \mathcal{F}_{z,Lz}(t), \mathcal{F}_{Lz,z}(t), \mathcal{F}_{Lz,z}(t)\}$$

$$=\mathcal{F}_{Lz,z}(t).$$

Therefore, by Theorem 1.15, Lz = z.

Similarly, we get Mz = Sz = z.

By the hypothesis of the theorem $M(\mathcal{K}) \subseteq A(\mathcal{K})$, there exists $w \in \mathcal{K}$ such that

$$z = Mz = Aw$$
. Taking $x = w$, $y = x_{2n+1}$ with $\alpha = 0$ in (iv), we get

$$\mathcal{F}_{Lw,Mx_{2n+1}}(kt) \geq Min~\{\mathcal{F}_{Aw,Lw}\left(t\right),\mathcal{F}_{Sx_{2n+1},Mx_{2n+1}}(t)\text{,}$$

$$\mathcal{F}_{Sx_{2n+1},Lw}(t), \mathcal{F}_{Aw,Mx_{2n+1}}(t), \mathcal{F}_{Aw,Sx_{2n+1}}(t)\}.$$

Taking $n \to \infty$, we get

$$\begin{split} \mathcal{F}_{Lw,z}(kt) &\geq \text{Min } \{\mathcal{F}_{z,Lw}(t), \mathcal{F}_{z,z}(t), \mathcal{F}_{z,Lw}(t), \mathcal{F}_{Lz,z}(t), \mathcal{F}_{z,z}(t)\}, \\ &= \mathcal{F}_{z,Lw}(t). \end{split}$$

Therefore, by Theorem 1.15,Lw = z = Aw, and since L and A are compatible maps of type (A), we get Lz = Az. Therefore, Az = Sz = Lz = Mz = z and hence z is a common fixed point of four maps.

For uniqueness, let $z_1(z_1 \neq z)$ be another common fixed point of the given self-maps. Then $z_1 = Az_1 = Lz_1 = Mz_1 = Sz_1$.

By taking x = z and $y = z_1$ with $\alpha = 0$ in (iv), we get

$$\mathcal{F}_{Lz,Mz_1}(kt) \ge Min \{\mathcal{F}_{Az,Lz}(t), \mathcal{F}_{Sz_1,Mz_1}(t), \mathcal{F}_{Sz_1,Lz}(t),$$

$$\mathcal{F}_{Az,Mz_1}(t),\mathcal{F}_{Az,Sz_1}(t)\},$$

that is,

$$\mathcal{F}_{z,z_1}(kt) \geq Min \, \left\{ \mathcal{F}_{z,z_1}(t), \mathcal{F}_{z,z}(t), \mathcal{F}_{z_1,z_1}(t), \mathcal{F}_{z,z_1}(t), \mathcal{F}_{z_1,z}(t) \right\}$$

which gives

 $\mathcal{F}_{z,z_1}(kt) \ge \mathcal{F}_{z,z_1}(t)$. Therefore, by Theorem 1.15 $z_1 = z$.

Hence, z is a unique common fixed point of self-maps A, S, L and M. This completes the proof.

References

- [1]. M. A. Al-Thagafi and N. Shahzad, Generalized I-non expansive self-maps and invariant approximations, *Acta Math. Sinica*, **24** (2008), p. 867-876.
- [2]. Y. J. Cho, P. P. Murthy and M. Stojakovic, Compatible mappings of type (A) and common fixed points in Menger space, *Comm. Korean Math. Soc.*, 7 (1992), p. 325-339.
- [3]. A. Jain, and B. Singh, Common fixed point theorem in Menger space through compatible maps of type (A), *Chh. J. Sci. Tech.*, **2** (2005), p. 1-12.
- [4]. A. Jain, V. K. Gupta, D. Bamniya, Fixed Points in Menger Space for Compatibility of Type (A) and Occasionally Weakly Compatible, *International Journal of Scientific and Innovative Mathematical Research*, **2** (2014), p. 489-499.
- [5]. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), p. 535-537.
- [6]. S.N. Mishra, Common fixed points of compatible mappings in PM-spaces, *Math.Japonica*, **36** (1991), p. 283-289.
- [7]. B. Schweizer and A. Sklar, Probabilistic metric spaces, *Pacific J.Math.*, **10** (1960), p. 313-334.
- [8]. V. M. Sehgal and A. T. Bharucha- Reid, Fixed points of contractionmappings in probabilistic metric space, *Math. System Theory*, **6**(1972), p. 97-107.
- [9]. V. Sharma, Common fixed point theorems in Menger space using semicompatibility, *International Journal of Advanced Research in Computer Science and Software Engineering*, **6**(2016), p. 781-796.
- [10]. B. Singh and S. Jain, A fixed point theorem in Menger Space through weak compatibility, *J. Math. Anal. Appl.*, **301** (2005), p. 439-448.
- [11]. S. L. Singh and B.D. Pant, Common fixed point theorems in probabilistic metric spaces and extension to uniform spaces, *Honam. Math. J.*, **6**(1984), p. 1-12.